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Abstract
This paper investigates incorporating community well-being metrics into the objectives
of optimization algorithms and the teams that build them. It documents two cases where
a large platform appears to have modified their system to this end. Facebook incorpo-
rated “well-being” metrics in 2017, while YouTube began integrating “user satisfac-
tion” metrics around 2015. Metrics tied to community well-being outcomes could also
be used in many other systems, such as a news recommendation system that tries to
increase exposure to diverse views, or a product recommendation system that
opstimizes for the carbon footprint of purchased products. Generalizing from these
examples and incorporating insights from participatory design and AI governance leads
to a proposed process for integrating community well-being into commercial AI
systems: identify and involve the affected community, choose a useful metric, use this
metric as a managerial performance measure and/or an algorithmic objective, and
evaluate and adapt to outcomes. Important open questions include the best approach
to community participation and the uncertain business effects of this process.

Keywords Artificial intelligence . AI ethics . Community well-being . Optimization .

Corporate social responsibility

Introduction

This paper is an extended analysis of a simple idea: large-scale commercial optimizing
systems may be able to manage harmful side effects on communities by monitoring
established well-being metrics. It sketches a theory that ties together quantitative
measures of well-being, contemporary metrics-driven management practice, the objec-
tive function of optimization algorithms, participatory and multi-stakeholder gover-
nance of algorithmic systems, and the protection or promotion of community well-
being. Detailed analyses of recent efforts by Facebook and YouTube are used to
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illustrate the challenges and unknowns of this approach, which generalizes to a variety
of different types of artificial intelligence (AI) systems. The core contribution of this
article is a proposed process for the use of community well-being metrics within
commercial AI systems.

Well-being encompasses “people’s living conditions and quality of life today
(current well-being), as well as the resources that will help to sustain people’s
well-being over time (natural, economic, human and social capital)” (OECD
2019b, p. 2). Community well-being attempts to evaluate well-being at the level
of a community defined “in geographic terms, such as a neighborhood or town …
or in social terms, such as a group of people sharing common chat rooms on the
Internet, a national professional association or a labor union” (Phillips and Pittman
2015, p. 3). The measurement of well-being is now a well-established field with a
long history, and is increasingly used in policy-making (Exton and Shinwell
2018).

Large AI systems can have both positive and harmful side effects on communities,
through effects on employment and inequality (Korinek and Stiglitz 2017), privacy and
safety (OECD 2019a), addictive behavior (Andreassen 2015), fairness and discrimina-
tion (Barocas et al. 2018), human rights (Donahoe and Metzger 2019), polarization,
extremism, and conflict (Ledwich and Zaitsev 2020; Stoica and Chaintreau 2019), and
potentially many other areas (Kulynych et al. 2020). Importantly, AI systems can affect
non-users too, as with environmental externalities.

Most AI is built around optimization “in which the aim is to find the best state
according to an objective function” (Russell and Norvig 2010, p. 121) where an
objective function is some method for quantitatively evaluating the desirability of
an outcome (Dantzig 1982). Standard management practice also increasingly
involves the maximization of quantitative metrics (Parmenter 2020), which can
be considered an optimization process. This paper is concerned with optimizing
systems composed of people and algorithms which affect communities, where the
choice of objective might have significant societal influence. Examples include
systems used to allocate resources or assign work, choose what news people see,
recommend products to buy, or implement government policy. Many of these
systems would be considered AI, but perhaps the phrase “autonomous and intel-
ligent systems” (Schiff et al. 2020, p. 1) which appears in certain standards efforts
would be better, because an automated system does not have to be very smart to
cause harm. Rather, the unifying feature is optimization – both the cause of many
problems and an opportunity for a response.

The central idea of this paper is to incorporate community well-being metrics into
the optimization process at both the managerial and technical level. This is a
sociotechnical approach to systems design (Baxter and Sommerville 2011) that con-
siders the role of both people and technology. There are many technical interventions
that could be undertaken aside from the modification of an algorithmic objective
function; for example, a social media product team could choose to show a simple
chronological list of posts rather than using algorithmic content personalization. How-
ever, if product managers are evaluated on community well-being outcomes, they may
choose to make such a change based on the expected effects on users. The integration
of the managerial and the technical in an optimization framework can motivate many
possible product design changes.
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Background

This paper responds most directly to recent calls for research into well-being and AI. It
proposes specific “improvements to product design” (Schiff et al. 2019, p. 3) and it is
interdisciplinary, systems-based, and community-oriented (Musikanski et al. 2020). It
draws on and contributes to the emerging field of recommender alignment, the practice
of building algorithms for content ranking and personalization that enact human values
(Stray et al. 2020).

The goal of the process proposed in this paper is the governance of large-scale
commercial algorithmic systems. Rahwan (2018) calls this society-in-the-loop control,
defined as “embedding the values of society, as a whole, in the algorithmic governance
of societal outcomes” (p. 3). In this sense community participation is a key element of
the proposed framework, and this paper draws on approaches as diverse as participatory
design (Simonsen and Robertson 2012) and corporate stakeholder engagement
(Manetti 2011).

Community Well-Being

At the individual level well-being is usually studied as an experiential state, and there is
now a wealth of research on the definition and reliable measurement of subjective well-
being (Diener et al. 2018). Although well-being is a rich, multidimensional construct,
even single questions can reveal substantial information, such as overall, how satisfied
are you with life as a whole these days? answered on a 0–10 scale. This well-studied
measure has several advantages: it correlates with how people make major life deci-
sions, gives a similarly reliable result across cultures, and is by itself informative
enough to be used in quantitative evaluations of policy choices (O’Donnell et al. 2014).

Community well-being “embraces a wide range of economic, social, environmental,
political, cultural dimensions, and can be thought of as how well functions of commu-
nity are governed and operating” (Sung and Phillips 2018, p. 64). In practice, commu-
nity well-being is assessed using a variety of metrics across many domains. Often both
subjective and objective indicators are needed to get a full picture (Musikanski et al.
2019). A survey of local and national well-being indicator frameworks in use in the
United Kingdom gives an overview of the substance and range of such metrics
(Bagnall et al. 2017). Community well-being frameworks can originate from consid-
eration of geographic communities, or communities of interest (Phillips and Pittman
2015) which may be particularly relevant to online platforms.

As an example community well-being framework, the OECD Better Life Index
(Durand 2015) aims to measure “both current material conditions and quality of life”
(p. 1) across countries through the metrics shown in Table 1. This framework includes
the life satisfaction measure above, as well as statistical indicators around health,
education, employment, etc. in conjunction with subjective indicators such as whether
one feels safe walking alone at night.

Technologists and scholars have begun to appreciate the significance of well-being
measures in the design and operation of AI systems (Musikanski et al. 2020). The IEEE
7010 Recommended Practice Standard for Assessing the Impact of Autonomous and
Intelligent Systems on Human Well-Being collects pre-existing measures from sources
such as the OECD Better Life Index, the UN Sustainable Development Indicators, the
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Human Development Index, the World Health Organization, the World Values Survey,
Freedom House, and others (Schiff et al. 2020). From the point of view of a technol-
ogist who is concerned about the societal effects of their work, established well-being
metrics have the advantage of representing extensive deliberation by domain experts.

Optimization

Optimization is used extensively in AI to guide training and learning. A problem to be
solved is expressed as a scalar function – a method to calculate a single number that
expresses the desirability of any given hypothetical solution. Solving the problem
means finding a solution that maximizes this function. The encapsulation of concerns
into a single function was a major conceptual advance that enabled the creation of
generic optimization algorithms (Dantzig 1982). Conceptually, any problem that has
some set of best solutions can be expressed as optimization with a single objective

Table 1 Indicators from the OECD Better Life Index (Durand 2015). Each of these has a specific statistical
definition and has been collected across OECD countries since 2011

Domain Indicators

Housing Dwellings without basic facilities

Housing expenditure

Rooms per person

Income Household net adjusted disposable income

Household net wealth

Jobs Labor market insecurity

Employment rate

Long term unemployment rate

Community Quality of support network

Education Educational attainment

Student skills

Years in education

Environment Air pollution

Water quality

Civic engagement Stakeholder engagement for developing regulations

Voter turnout

Health Life expectancy

Self-reported health

Life Satisfaction Life satisfaction

Safety Feeling safe walking alone at night

Homicide rate

Work-life balance Employees working very long hours

Time devoted to leisure and personal care
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function, though practical problem-solving often involves the optimization of multiple
sub-goals.

A supervised machine learning algorithm that attempts to identify objects from
images would usually be trained through a loss function that penalizes incorrect
answers. A reinforcement learning approach to playing a video game might use the
game score as a reward function. There are also value functions, cost functions, fitness
functions, energy functions and more, all of which operate on similar principles
(Russell and Norvig 2010). For simplicity, in this paper I refer to all of the scalar
functions used to drive AI behavior as objective functions.

In this paper I refer to an optimizing system as if there were one optimizer and one
objective. In practice such systems, especially those at platform scale, may include
dozens or hundreds of optimizing components (numerous trained sub-models, for
example). There isn’t one objective function that can be altered, but many. Nonetheless,
there are usually a few high-level goals concerned with the system’s main outputs. This
is the case at Groupon with many interacting models and a master objective function
that aligns to company goals (Delgado et al. 2019).

Quantitative metrics analogous to objective functions are also used in corporate
management. Modern management practice includes concepts such as key performance
indicators (Parmenter 2020) and objectives and key results (Doerr 2017), both of which
involve quantitative indicators of progress. Economic theory frequently models the
corporation as a profit optimizer (e.g. Samuelson and Marks 2014). More sophisticated
descriptions try to account for the creation of various types of long-term value, such as
the balanced scorecard (Kaplan 2009) and sustainability accounting (Richardson
2013), both of which describe various non-financial metrics that are intended to be
optimized.

Case Studies of Platform Interventions

This section presents two examples where large technology companies seem to have
optimized for well-being, or a similar concept. These cases have been reconstructed
through documentary evidence such as public posts, previously published interviews,
financial reports, and research articles by employees.

Facebook’s Well-Being Optimization

In late 2017 and early 2018, Facebook made a number of changes to their product
explicitly designed to promote well-being. Facebook researchers Ginsberg and Burke
(2017) wrote in a public post in December 2017:

What Do Academics Say? Is Social Media Good or Bad for Well-
Being? According to the research, it really comes down to how you use
the technology. For example, on social media, you can passively scroll
through posts, much like watching TV, or actively interact with friends —
messaging and commenting on each other’s posts. Just like in person,
interacting with people you care about can be beneficial, while simply
watching others from the sidelines may make you feel worse. (para. 7).
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This post cites a number of peer-reviewed studies on the well-being effects of social
media, some of which were collaborations between Facebook researchers and
academics. Ginsberg and Burke (2017) cite Verduyn et al.’s (2017) review paper on
the effects of social media on well-being, which has an obvious resonance with
Facebook’s framing:

passively using social network sites provokes social comparisons and envy,
which have negative downstream consequences for subjective well-being. In
contrast, when active usage of social network sites predicts subjective well-being,
it seems to do so by creating social capital and stimulating feelings of social
connectedness. (Verduyn et al. 2017, p. 274)

A close reading of posts around this time shows that Facebook developed a well-being
proxy metric. A January 2018 post by Facebook’s Chief Executive Officer notes that
“research shows that strengthening our relationships improves our well-being and
happiness” (Zuckerberg 2018, para. 2) and mentions well-being twice more, then
switches to the phrase “meaningful social interactions:”

I'm changing the goal I give our product teams from focusing on helping you find
relevant content to helping you have more meaningful social interactions.
(Zuckerberg 2018, para. 7)

Relevance is a term of art in recommender systems, referring to user preferences as
expressed through item clicks or ratings, and is increasingly understood as a simplistic
objective (Jannach and Adomavicius 2016). The algorithmic change away from rele-
vance was described by the head of the News Feed product:

Today we use signals like how many people react to, comment on or share posts
to determine how high they appear in News Feed. With this update, we will also
prioritize posts that spark conversations and meaningful interactions between
people. To do this, we will predict which posts you might want to interact with
your friends about, and show these posts higher in feed (Mosseri 2018, para. 3).

Facebook created a well-being metric and assigned it as a goal to a product team, which
incorporated it into an existing algorithmic objective function. This objective function
was augmented by creating a model that uses existing data such as past user behavior
and post content to predict whether a user will have a meaningful social interaction if
shown any particular post. There is little public documentation of how meaningful
social interactions are measured. The most detailed description is from the transcript of
a call where Facebook reported earnings to investors, which explains that meaningful
social interactions are measured through user surveys:

So the thing that we're going to be measuring is basically, the number of
interactions that people have on the platform and off because of what they're
seeing that they report to us as meaningful…the way that we've done this for
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years is we've had a panel, a survey, of thousands of people who basically we
asked, what's the most meaningful content that they had seen in the platform or
they have seen off the platform. (Facebook 2018, p. 13)

The resulting system is reconstructed in Fig. 1.

While there is no public account of the effects of the incorporation of the meaningful
social interactions prediction model on the meaningful social interactions metric as
measured by Facebook through user surveys, Facebook has reported reduced engage-
ment on at least one product, suggesting that the meaningful social interactions
objective was weighted strongly enough to cause significant changes in which items
are presented to users:

video is just a passive experience. To shift that balance, I said that we were going
to focus on videos that encourage meaningful social interactions. And in Q4, we
updated our video recommendations and made other quality changes to reflect
these values. We estimate these updates decreased time spent on Facebook by
roughly 5% in the fourth quarter. To put that another way: we made changes that
reduced time spent on Facebook by an estimated 50 million hours every day to
make sure that people's time is well spent. (Facebook 2018, p. 2)...

YouTube’s User Satisfaction Metrics

John Doerr’sMeasure What Matters (2017) documents YouTube’s multi-year effort to
reach one billion hours of daily user watch time through interviews with Susan
Wojcicki, Chief Executive Officer and Cristos Goodrow, Vice President of Engineering
at YouTube (Doerr 2017, pp. 154–172). Goodrow describes the inception of

Fig. 1 A reconstruction of Facebook’s use ofmeaningful social interactions circa 2018. Well-being effects are
unobserved because they happen outside of user interactions with Facebook
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YouTube’s recommendation system in 2011, and how he advocated to optimize for
watch time instead of video views as:

On a dedicated team named Sibyl, Jim McFadden was building a system for
selecting “watch next” recommendations, aka related videos or “suggestions.” It
had tremendous potential to boost our overall views. But were views what we
really wanted to boost?...

I sent a provocative email to my boss and the YouTube leadership team. Subject line:
“Watch time, and only watch time.” It was a call to rethink howwemeasured success:
“All other things being equal, our goal is to increase [video] watch time.”...

Our jobwas to keep people engaged and hanging outwith us. By definition, viewers are
happier watching seven minutes of a ten-minute video (or even two minutes of a ten-
minute video) than all of a one-minute video.Andwhen they’re happier, we are, too.
(Goodrow quoted in Doerr 2017, p. 162)...

Goodrow’s retelling includes user happiness and satisfaction as goals along with the
more business-oriented engagement. For the purposes of this paper, I assume user
happiness and satisfaction are analogous to well-being, but unlike the Facebook case,
YouTube’s public statements have not mentioned well-being. In accordance with the
unified treatment of managerial and technical optimization proposed in this paper,
Goodrow confirms that a team-level metric drove engineering decisions:

Reaching one billion hours was a game of inches; our engineers were hunting for
changes that might yield as little as 0.2 percent more watch time. In 2016 alone,
they would find around 150 of those tiny advances. We’d need nearly all of them
to reach our objective. (Goodrow quoted in Doerr 2017, p. 169)

Yet watch time was not the only objective, and YouTube incorporated other changes to
improve the quality of the product and the effects on users:

In fact, we’d commit to some watch-time-negative decisions for the benefit of our
users. For example, we made it a policy to stop recommending trashy, tabloid-
style videos—like “World’s Worst Parents,” where the thumbnail showed a baby
in a pot on the stove. Three weeks in, the move proved negative for watch time by
half a percent. We stood by our decision because it was better for the viewer
experience, cut down on click bait, and reflected our principle of growing
responsibly. Three months in, watch time in this group had bounced back and
actually increased. Once the gruesome stuff became less accessible, people
sought out more satisfying content. (Goodrow quoted in Doerr 2017, p. 164)

This was the beginning of a move away from strict maximization of time spent. Starting
in 2015 YouTube began to incorporate user satisfaction metrics (Doerr 2017, p. 170).
As in the Facebook case, these are derived from surveys:
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we learned that just because a user might be watching content longer does not
mean that they are having a positive experience. So we introduced surveys to ask
users if they were satisfied with particular recommendations. With this direct
feedback, we started fine-tuning and improving these systems based on this high-
fidelity notion of satisfaction. (Google 2019, p. 21)

These user satisfaction survey results were incorporated directly into the objectives of
the YouTube recommendation system, as discussed in a recent YouTube technical
paper:

we first group our multiple objectives into two categories: 1) engagement objec-
tives, such as user clicks, and degree of engagement with recommended videos;
2) satisfaction objectives, such as user liking a video on YouTube, and leaving a
rating on the recommendation. (Zhao et al. 2019, p. 43)

Analysis of Facebook and YouTube Cases

The Facebook and YouTube cases are significant because they are examples of a major
platform operator explicitly saying that they have decided to monitor and optimize for a
well-being proxy, operationalized at both the management and algorithmic levels.

Facebook has provided a public justification for its meaningful social interaction
metric in terms of prior research which suggests that active use of social media
improves well-being while passive use decreases it. While this is far from a holistic
measure of well-being, let alone community well-being, at least it connects to previous
work in a clear way. Public statements from YouTube have not mentioned well-being,
instead focusing on “responsibility” (Wojcicki 2019, para. 2) and user satisfaction as
assessed through surveys.

Explicit user surveys are an improvement on YouTube’s previous identification of
watch time with user happiness. Researchers report a negative correlation between TV
watching and well-being that suggests there is something like an addiction mechanism
involved: “individuals with incomplete control over, and foresight into, their own
behavior watch more TV than they consider optimal for themselves and their well-
being is lower than what could be achieved” (Frey et al. 2007, p. 283). Similar effects
have been observed in social media use where addicted users “have typically attempted
to cut down on social networking without success” (Andreassen 2015, p. 176). Google
now publicly recognizes that maximizing watch time does not optimize for “positive”
outcomes (Google 2019, p. 21).

A more systematic conception of well-being would articulate what aspects of well-
being matter to YouTube and why user satisfaction is a good proxy. Of course, well-
being outcomes depend enormously on who a user is and what they watch. A user
might learn valuable and fulfilling skills from how-to videos, become more politically
engaged, consume worthwhile art, or they might be radicalized into violence (Ledwich
and Zaitsev 2020).

Another issue is that both companies are optimizing for individual outcomes: well-
being but not necessarily community well-being. Community well-being “is more than
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an aggregate of individuals’ satisfaction” (Sung and Phillips 2018, p. 65) and cannot be
assessed simply by adding up the well-being of all individuals in the community. This
is analogous to the classic problem of aggregating utilities in welfare economics (Foster
and Sen 1997, p. 16). Conversely, optimizing for each person individually will not
necessarily promote community well-being due to problems of externalities, collective
action, and conflicting preferences (Baum 2020; Milano et al. 2019b). Attention to
aggregates may also miss local problems, such as negative effects in a particular city or
for a particular subgroup, or run into Simpsons’ paradox issues where the sign of the
effect depends on the granularity of the groups studied (Kievit et al. 2013). For all these
reasons, clarity on the definition of community or communities matters greatly.

Perhaps the biggest weakness of these cases is that there is no record of consultation
with the putative beneficiaries of these algorithmic changes, and no public evaluation of
the results. Hopefully algorithmic interventions of this magnitude were informed by
user research or some sort of consultative process, but none was reported. Presumably
meaningful social interactions and user satisfaction were increased, but there has been
no disclosure of how much. Absent also is any report of effects on any other compo-
nents of well-being, such as feelings of social connectedness or life satisfaction, or even
objective indicators like employment status. It’s similarly unclear how these changes
affected not just individual well-being but community well-being for different com-
munities; there may even have been negative effects on certain types of users. Infor-
mation about outcomes is especially important because the link between Facebook’s
meaningful interactions and well-being is theoretical, deduced from previous research
into active and passive social media use, while YouTube has said their user satisfaction
surveys are included in a “responsibility” metric (Bergen 2019, para. 10) and that they
aim for “positive” experiences (Google 2019, p. 21) without providing any further
explanation of their goals or results. Determining the actual effect of these large-scale
interventions is itself a significant social science research effort, and if Facebook or
YouTube have these answers, they have not been shared. This is algorithmic manage-
ment, but not yet the algorithmic governance that the society-in-the-loop model envi-
sions (Rahwan 2018).

The reported business outcomes are also instructive, as both the Facebook and
YouTube changes resulted in at least temporary reductions in engagement metrics.
Facebook reports that the incorporation of a meaningful social interactions metric into
their video product caused a 5% reduction in time spent, which was considered
significant enough to be discussed with investors (Facebook 2018) but the longer-
term effects are unclear. YouTube described changes that reduced watch time but also
reports that watch time recovered over a time span of months as users changed their
behavior. This demonstrates both that major corporations are willing to accept reduc-
tions in engagement to pursue social ends, and that the long-term business effects of
incorporating well-being metrics are not necessarily negative.

Generalization to Other Domains

The Facebook and YouTube cases suggest the possibility of a general method for
managing the well-being outcomes of commercial optimizing systems, which is the
core contribution of this article. This section begins by arguing that some type of
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metric-driven community well-being optimization is not only useful but likely neces-
sary for any AI system with broad social impacts, because individual user control will
not be sufficient. It then shows how this general method could apply to diverse domains
by working through potential applications to news recommendation and online shop-
ping. These hypothetical applications demonstrate the generality of a metrics-driven
approach and illuminate further possibilities and challenges that shape the recommen-
dations in this paper.

User Control is not Sufficient for Community Well-Being

This article recommends participatory processes to involve users and other stakeholders
in metric-driven optimization for community well-being. A potential alternative is to
provide increased user control directly, so that people can choose what is best for
themselves. Many authors have pointed to the central role of user agency in the ethics
of AI systems (Floridi and Cowls 2019) and in the important context of content ranking
Paraschakis (2017) has proposed “controls [that] enable users to adjust the recom-
mender system to their individual moral standards” (p. 6). However, increasing user
agency will not by itself solve the problem of ensuring good outcomes at the commu-
nity level because many users will not customize the systems they use, and because
individually good choices do not necessarily produce socially good outcomes.

Any set of controls must necessarily be few enough to be humanly manageable. This
restricts the number of dimensions that can be controlled and will make it difficult to
express nuanced conceptions of well-being. Natural language interfaces e.g. Yu et al.
(2019) may allow the expression of more complicated concepts. Nonetheless users will
probably leave most parameters at default settings, which means that the defaults must
promote well-being.

Even if all users in fact succeeded in directing an AI system to do exactly as desired
this would not necessarily result in the best community outcomes. As Ostrom (2000)
has articulated, individual action does not succeed in producing social goods without
the concurrent evolution of social norms. These challenges of collective action have
been explored in the context of AI systems from the perspective of social choice theory
(Baum 2020) and multi-stakeholder recommendation systems (Milano et al. 2019a).
Further, existing societal inequalities can constrain users’ ability to exploit algorithmi-
cally provided choices (Robertson and Salehi 2020), for example due to a lack of
information or the cost burden of choosing the “best” option.

User control is essential, perhaps even necessary for community well-being, but it is
not sufficient. Collective algorithmic governance is needed for much the same reasons
societal governance is needed, and appropriate well-being metrics are useful in algo-
rithmic governance just as they are in public policy.

Diverse News Recommendations

News recommenders are the algorithms that choose, order, and present journalism
content to users. The potential application of community well-being metrics to these
systems illustrates the challenges around defining a community and choosing metrics.
News recommendation algorithms can have societal consequences (Helberger 2019)
but it is not clear how to manage such algorithms for community well-being. To begin
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with, there is no single community that consumes news, but many overlapping
communities organized around different geographic regions and different topics
(Reader and Hatcher 2011, p. 3). Each of these communities may have different
concerns at any given moment. Incorporating social network analysis or country-
specific data can improve the performance of recommender systems as measured by
traditional relevance metrics (Chen et al. 2018; Roitero et al. 2020) but the question of
how a recommender system impacts pre-existing communities, e.g. a city, has not been
explored. Conversely, existing community well-being indicators have not been de-
signed to capture the consequences of news recommender systems.

One well-developed concern with news recommenders is exposure diversity, mean-
ing the range of sources, topics, and viewpoints that each person is algorithmically
presented (Bernstein et al. 2020). Taking political theory as a starting point Helberger
et al. (2018) identify liberal, deliberative, and radical approaches to the design of
diverse news recommenders. Consider the problem of designing a national news
recommender that supports a deliberative view of diversity, one in which:

exposure to diverse viewpoints is considered valuable because it helps citizens
develop more informed opinions and less polarized, more tolerant attitudes
towards those with whom they disagree … it is conceivable to design metrics
that would focus, for example, on user engagement with opposing political views,
cross-ideological references in public debates or social media connections be-
tween people who represent different ideological positions. (Helberger et al.
2018, p. 195)

Diversity metrics could be constructed from algorithmic methods to estimate the
ideological position of users or posts (Budak et al. 2016; Garimella and Weber
2017). These give a measure of distance between any two items, which could then
be used to define the diversity of a set of recommended items according to various
standard formulas such as the average distance between any pair (Kunaver and Požrl
2017).

Such a metric would capture the output of the system, not its effects on users.
Facebook and YouTube use user surveys to tie algorithmic changes to human out-
comes. It may be possible to establish a causal connection from news diversity metrics
to existing well-being metrics such as voter turnout, and Facebook has already dem-
onstrated a substantial effect on voter turnout by presenting users with personalized
messages (Bond et al. 2012). It would be better to direct the optimization process
towards more closely related outcomes like polarization or tolerance that are not
included in current well-being frameworks. Directly measuring these outcomes is
crucial because exposure to diverse opinions can actually increase polarization (Bail
et al. 2018). Polarization and tolerance outcomes are also explicitly relational, and thus
indicate aspects of community well-being not captured in individual-level metrics.

Low Carbon Shopping

Large-scale product recommender systems have profound influence over what is
purchased. One reason for this is that it is not possible to navigate millions of possible
products without them. Rolnick et al. (2019) have proposed using these systems to
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direct consumers to lower-carbon alternatives. This possibility highlights two problems
that may arise in the course of modifying AI objective functions: obtaining the data
needed to evaluate a metric and understanding the business impacts of such a change.

Climate change is a key issue for many communities (Fazey et al. 2018) and carbon
emissions appear in a number community well-being frameworks (Bagnall et al. 2017).
Carbon emissions from recommended products are also a key example of AI system
side effects on non-users. From a technical point of view, carbon footprint can be
incorporated using multi-stakeholder recommendation algorithms that explicitly con-
sider the effect on parties other than the user (Abdollahpouri et al. 2020).

This is possible only if the carbon footprint of each product is available. There are
now established methods to estimate product carbon footprints (BSI 2011; ISO 2018)
but there are no product carbon footprint (PCF) databases comprehensive enough to
cover the millions of different products sold by a large online retailer. However, it may
be possible to use machine learning methods to estimate the PCF values of an entire
product portfolio starting from a comparatively small database of examples
(Meinrenken et al. 2012). Robust, scalable product carbon footprint estimation could
be a key enabling technology for low-carbon commerce and, ultimately, long-term
community well-being.

A commercial operator will want to know the business effects before any such
system is implemented, and it is tempting to evaluate the potential revenue effect of
incorporating a carbon term into the objective function by testing against historical
purchase data. Such back-testing will show that optimizing for anything other than
profit must drive the system away from a profit maximum, but offline estimates will not
give the full story because both consumer and producer behavior may change if carbon
footprint starts to affect product ranking. Users might appreciate being informed of
low-carbon alternatives and buy more from that retailer or pay a premium for lower
carbon items, while producers will have an incentive to sell lower carbon products. The
case of organic food demonstrates the existence of such market dynamics, as it is 22–
35% more profitable globally than conventional alternatives even though it is typically
more expensive to produce (Crowder and Reganold 2015).

Recommendations

The incorporation of community well-being metrics into both managerial and algorith-
mic optimization is a very general method for managing the effects of commercial
optimizing systems, yet good management is only part of good governance. This
section synthesizes the analysis and discussion above with previous work on algorith-
mic governance, participatory design, best use of metrics, and corporate stakeholder
engagement to make recommendations for fostering community well-being in AI
systems in ways that are both effective and accepted as legitimate. It also identifies
gaps and unknowns where future research would be valuable.

Identifying and Involving Communities

An attempt to optimize for community well-being is an attempt to benefit a particular
group of people, who need to have a say in what is done on their behalf. In some cases
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it would be reasonable to say that every user of the system (potentially billions of
people) is a member of the community, but that would preclude the management of
local outcomes such as a system’s effects on the residents of a particular city, or on
people of a certain age, or workers in particular professions. Non-users can be affected
as well, as in environmental externalities or a navigation system that routes cars to a
formerly quiet street. Each view of community is a choice about who counts, and this
choice should be made explicit before any intervention begins.

Once a community is identified, there are many approaches to try to integrate its
members into the process of selecting and using metrics. Participatory design is an
orientation and a set of practices that attempts to actively involve all stakeholders in a
system design process (Simonsen and Robertson 2012). It is a promising framework for
algorithmic governance. The WeBuildAI method (Lee et al. 2019) demonstrates what
participatory design of metrics might look like. Researchers worked with a food-
delivery non-profit to design an algorithm to match donated food with volunteer drivers
and local food distribution charities. Stakeholders from each of these groups worked
with researchers to build quantitative models of their preferred trade-offs between
factors such as driver travel time, time since last donation, neighborhood poverty level,
etc. At run time this system ranks the possible matches for each donation according to
the models representing the preferences of each stakeholder, with the final result chosen
through a ranked-choice voting rule. Future work could investigate participatory metric
design in the context of a large commercial platform.

There are both instrumental and political goals when attempting to integrate com-
munities into the selection and use of metrics. Without engaging the community, it is
not possible to know which aspects of well-being matter most to them and how serious
these issues are, and therefore how to make tradeoffs. Engagement is also necessary for
credibility. When choosing community indicators, “most communities consider input
by its residents and others to be vital; it builds support for the use of indicators as well
as help vest those most impacted by subsequent actions in decision-making processes”
(Sung and Phillips 2018, p. 73). In the context of commercial systems it will also be
important to draw on the experience of corporate stakeholder engagement efforts such
as those found in sustainability reporting (GSSB 2016; Manetti 2011).

Choosing Metrics

Aside from the well-known issues with using metrics in a management context
generally (Jackson 2005) metrics pose a problem for AI systems in particular because
most AI algorithms are based on strongly optimizing a narrow objective (Thomas and
Uminsky 2020). Poor use of metrics can result in a damaging emphasis on short term
outcomes, manipulation and gaming, and unwanted side effects (Jackson 2005;
Thomas and Uminsky 2020). Even a successful metric cannot remain static, as the
structure of the world it measures is constantly changing. In addition, there are many
domains without a clear consensus on well-being goals, necessitating a process of
normative deliberation before metrics can be chosen. The following issues should be
considered in choice of metrics:

Deciding What to Measure In many cases existing well-being metrics will not be
directly usable because they are too expensive to collect at scale or don’t readily apply
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in the company’s domain. These issues drove Facebook’s substitution of meaningful
social interactions for more general measures of user well-being. Creating a custom
metric is challenging because community well-being is a theoretical construct, not an
observable property, and there may be misalignment between the designer’s intentions
and what is actually measured. For example, decreasing polarization measures may just
indicate that minority voices have been effectively silenced. The particular well-being
aspect of interest must first be “operationalized” and tested for reliability and validity
(Jacobs and Wallach 2019).

Long-Term Outcomes If a metric is evaluated only over the short term it may lead to
poor longer-term outcomes. As the YouTube case demonstrates, a video platform that
tries to maximize user watch time may encourage binging behavior where users
eventually regret the time they spend. While effective AI optimization requires frequent
feedback, it is critical to pick shorter-term metrics that are thought to drive longer-term
outcomes (Lalmas and Hong 2018).

Gaming Any measure that becomes a target will change meaning as people change
their behavior, a very general problem that is sometimes known as Goodhart’s law
(Manheim and Garrabrant 2018). This is particularly relevant to large platforms that
must defeat adversarial efforts to gain exposure for financial or political ends. While
there are emerging methods to use causal inference to design metrics that resist gaming
(Miller et al. 2019), a more robust solution is to continuously monitor and change the
metrics in use.

Dynamism The metrics employed need to be able to change and adapt, a property that
Jackson (2005) names dynamism. This is necessary because of gaming and other
behavior change in response to metrics, but more importantly the world can and does
change; at the onset of the COVID-19 pandemic many existing machine learning
models stopped working (Heaven 2020). Dynamism also avoids the serious problems
that can arise from over-optimization for a single objective, such as a robot which
injures humans in an attempt to fetch a coffee more quickly (Russell 2019). In the
context of contemporary commercial optimization, there are always humans supervis-
ing and operating the AI system, and they are free to change the objective function as
needed.

Normative Uncertainty Catalogs such as IEEE 7010 (Schiff et al. 2020) provide a long
list of consensus metrics but not all of them will correspond to community needs, and
not all AI systems can be effectively evaluated using metrics originally designed for
public policy use. In short, many systems will face a lack of consensus around what a
“good” outcome would be. Appropriate values for AI systems cannot be derived from
first principles but must be the result of societal deliberation (Gabriel 2020), which
again underscores the necessity for participatory processes.
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Evaluating Outcomes

It may be very challenging to determine the actual well-being effects of incorporating a
metric into an optimization process. Facebook uses ongoing user panels to count
meaningful social interactions, but this is a narrow facet of user well-being, let alone
community well-being. They could use broader well-being instruments such as a life
satisfaction survey question, but it would be difficult to assess the causal contribution of
Facebook use to any changes. In other cases, such as the diverse news recommender,
pre-existing well-being indicators would not apply so assessing societal impact would
require the creation and validation of new community well-being metrics.

Outcome evaluation at scale is essentially corporate social science. The IEEE 7010
Recommended Practice Standard for Assessing the Impact of Autonomous and Intel-
ligent Systems on Human Well-Being proposes what amounts to a difference-in-
differences design between users and non-users before and after an algorithmic change
(Schiff et al. 2020). This is a promising approach, but there do not seem to be any
published examples.

Business Implications

For commercial AI systems, metrics-driven changes must also integrate legitimate
business concerns such as the cost of implementation and the effects on business
outcomes. Although a naïve analysis of multi-objective optimization suggests that
considering anything other than revenue can only reduce revenue, this assumes every-
thing else is equal. In reality there are complex secondary effects, such as changes in
user and supplier behavior. YouTube’s experience demoting clickbait videos is a
documented case where doing the responsible thing led to a short-term decrease in
the primary watch time metric, but then a long-term increase. It is difficult to predict the
financial effects of incorporating well-being into optimization. Business and social
objectives may turn out to be aligned, but this cannot be expected to be true as a rule.
While ethical outcomes can sometimes be achieved through changes to optimization
goals, there are also situations that could conceivably require avoiding features,
products, or business models altogether (Barocas et al. 2020).

Case studies are one promising avenue for progress on the problem of uncertain
business outcomes. If companies are already incorporating well-being metrics into their
management and algorithms then documenting these cases will let others learn from their
experiences, develop the field, and normalize the idea that companies should proactively
manage the effects of their optimizers. This underscores the need for transparency around
work that is explicitly designed to improve the lives of great numbers of people.

Conclusion

This paper has explored the integration of community well-being metrics into
commercially-operated optimizing systems. Community well-being is an attractive goal
because it is well-developed in public policy contexts and practically measurable. At
least two large technology companies, Facebook and YouTube, have explicitly
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modified their objective functions in pursuit of well-being, demonstrating the practi-
cality of this approach.

There are still a number of weaknesses in the interventions that Facebook and
YouTube have undertaken, at least in terms of what has been reported publicly.
The community that these interventions are intended to serve has not been well
defined; rather, these metrics and interventions are oriented towards the individual
level and do not account for existing communities such as cities or discussion
groups. It is not clear if or how users were engaged in selecting the meaningful
social interactions and user satisfaction metrics; there is no report of the outcomes
either in terms of these metrics or with respect to broader well-being metrics; and
although both companies reported reduced short term engagement, the broader
business effects have not been discussed.

However incomplete, the Facebook and YouTube cases suggest that the optimiza-
tion of community well-being metrics may be a powerful general method for managing
the societal outcomes of commercial AI systems. The same methods could be applied
to many other types of systems, such as a news recommender system that incorporates
measures of content diversity in an attempt to increase tolerance and reduce polariza-
tion, or an online shopping platform that uses product-level estimates of carbon
footprint to steer users toward more environmentally friendly purchases. Although
many scholars and critics have stressed the importance of increased user control over
AI systems, no amount of user control can replace appropriate well-being metrics due
to issues of collective action and the need for reasonable defaults.

An analysis of the above cases suggests that the following multi-step process may be
effective:

Identify a community to define the scope of action. In online settings this may be a
challenging decision.

Select a well-being metric, perhaps from existing frameworks. This stage frames
the problem to be solved in concrete terms, so it may be where community
involvement matters most.

Use this metric as a performance measure for the team building and operating the
system.

Directly translate the metric into code as a modification to an algorithmic objective
function or use these measured outcomes to evaluate more general design changes.

Evaluate the results, in terms of actual human outcomes, and adjust accordingly.
This may require adjusting the chosen metric in response to changing conditions,
or if it is found to be causing side effects of its own.

Require transparency throughout to make participation possible and to hold
companies accountable to the communities who are meant to be served by this
process.
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